Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 236
Filtrar
1.
Nat Commun ; 15(1): 3677, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693167

RESUMEN

Crystallization is a fundamental phenomenon which describes how the atomic building blocks such as atoms and molecules are arranged into ordered or quasi-ordered structure and form solid-state materials. While numerous studies have focused on the nucleation behavior, the precise and spatiotemporal control of growth kinetics, which dictates the defect density, the micromorphology, as well as the properties of the grown materials, remains elusive so far. Herein, we propose an optical strategy, termed optofluidic crystallithography (OCL), to solve this fundamental problem. Taking halide perovskites as an example, we use a laser beam to manipulate the molecular motion in the native precursor environment and create inhomogeneous spatial distribution of the molecular species. Harnessing the coordinated effect of laser-controlled local supersaturation and interfacial energy, we precisely steer the ionic reaction at the growth interface and directly print arbitrary single crystals of halide perovskites of high surface quality, crystallinity, and uniformity at a high printing speed of 102 µm s-1. The OCL technique can be potentially extended to the fabrication of single-crystal structures beyond halide perovskites, once crystallization can be triggered under the laser-directed local supersaturation.

2.
Light Sci Appl ; 13(1): 6, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38163839

RESUMEN

Atomic and close-to-atom scale manufacturing is a promising avenue toward single-photon emitters, single-electron transistors, single-atom memory, and quantum-bit devices for future communication, computation, and sensing applications. Laser manufacturing is outstanding to this end for ease of beam manipulation, batch production, and no requirement for photomasks. It is, however, suffering from optical diffraction limits. Herein, we report a spatial resolution improved to the quantum limit by exploiting a threshold tracing and lock-in method, whereby the two-order gap between atomic point defect complexes and optical diffraction limit is surpassed, and a feature size of <5 nm is realized. The underlying physics is that the uncertainty of local atom thermal motion dominates electron excitation, rather than the power density slope of the incident laser. We show that the colour centre yield in hexagonal boron nitride is transformed from stochastic to deterministic, and the emission from individual sites becomes polychromatic to monochromatic. As a result, single colour centres in the regular array are deterministically created with a unity yield and high positional accuracy, serving as a step forward for integrated quantum technological applications.

3.
Proc Natl Acad Sci U S A ; 121(6): e2309096120, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38285934

RESUMEN

Invisibility, a fascinating ability of hiding objects within environments, has attracted broad interest for a long time. However, current invisibility technologies are still restricted to stationary environments and narrow band. Here, we experimentally demonstrate a Chimera metasurface for multiterrain invisibility by synthesizing the natural camouflage traits of various poikilotherms. The metasurface achieves chameleon-like broadband in situ tunable microwave reflection mimicry of realistic water surface, shoal, beach/desert, grassland, and frozen ground from 8 to 12 GHz freely via the circuit-topology-transited mode evolution, while remaining optically transparent as an invisible glass frog. Additionally, the mechanic-driven Chimera metasurface without active electrothermal effect, owning a bearded dragon-like thermal acclimation, can decrease the maximum thermal imaging difference to 3.1 °C in tested realistic terrains, which cannot be recognized by human eyes. Our work transitions camouflage technologies from the constrained scenario to ever-changing terrains and constitutes a big advance toward the new-generation reconfigurable electromagnetics with circuit-topology dynamics.

4.
ACS Nano ; 18(1): 272-280, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38096138

RESUMEN

Two-dimensional (2D) semiconductors, such as transition metal dichalcogenides, have emerged as important candidate materials for next-generation chip-scale optoelectronic devices with the development of large-scale production techniques, such as chemical vapor deposition (CVD). However, 2D materials need to be transferred to other target substrates after growth, during which various micro- and nanoscale defects, such as nanobubbles, are inevitably generated. These nanodefects not only influence the uniformity of 2D semiconductors but also may significantly alter the local optoelectronic properties of the composed devices. Hence, super-resolution discrimination and characterization of nanodefects are highly demanded. Here, we report a near-field nanophotoluminescence (nano-PL) microscope that can quickly screen nanobubbles and investigate their impact on local excitonic properties of 2D semiconductors by directly visualize the PL emission distribution with a very high spatial resolution of ∼10 nm, far below the optical diffraction limit, and a high speed of 10 ms/point under ambient conditions. By using nano-PL microscopy to map the exciton and trion emission intensity distributions in transferred CVD-grown monolayer tungsten disulfide (1L-WS2) flakes, it is found that the PL intensity decreases by 13.4% as the height of the nanobubble increases by every nanometer, which is mainly caused by the suppression of trion emission due to the strong doping effect from the substrate. In addition to the nanobubbles, other types of nanodefects, such as cracks, stacks, and grain boundaries, can also be characterized. The nano-PL method is proven to be a powerful tool for the nondestructive quality inspection of nanodefects as well as the super-resolution exploration of local optoelectronic properties of 2D materials.

5.
6.
Science ; 381(6665): 1468-1474, 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37769102

RESUMEN

3D printing of inorganic materials with nanoscale resolution offers a different materials processing pathway to explore devices with emergent functionalities. However, existing technologies typically involve photocurable resins that reduce material purity and degrade properties. We develop a general strategy for laser direct printing of inorganic nanomaterials, as exemplified by more than 10 semiconductors, metal oxides, metals, and their mixtures. Colloidal nanocrystals are used as building blocks and photochemically bonded through their native ligands. Without resins, this bonding process produces arbitrary three-dimensional (3D) structures with a large inorganic mass fraction (~90%) and high mechanical strength. The printed materials preserve the intrinsic properties of constituent nanocrystals and create structure-dictated functionalities, such as the broadband chiroptical responses with an anisotropic factor of ~0.24 for semiconducting cadmium chalcogenide nanohelical arrays.

7.
Opt Lett ; 48(15): 3845-3848, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37527064

RESUMEN

A novel high-sensitivity temperature sensor based on a chirped thin-core fiber Bragg grating Fabry-Perot interferometer (CTFBG-FPI) and the Vernier effect is proposed and demonstrated. With femtosecond laser direct writing technology, two CTFBG-FPIs with different interferometric cavity lengths are inscribed inside a thin-core fiber to form a Vernier effect system. The two FPIs consist of two pairs of CTFBGs with a full width at half maximum (FWHM) of 66.5 nm staggered in parallel. The interferometric cavity lengths of the two FPIs were designed to be 2 mm and 1.98 mm as the reference arm and sensing arm of the sensor, respectively. The temperature sensitivity of this sensor was measured to be -1.084 nm/°C in a range of 40-90°C. This sensor is expected to play a crucial role in precision temperature measurement applications.

8.
Nanoscale ; 15(31): 12926-12932, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37465934

RESUMEN

Lithium niobate (LiNbO3) is a material that has drawn great interest in nonlinear optics because of its large nonlinear susceptibility and wide transparency window. However, for complex nonlinear processes such as high-harmonic generation (HHG), which involves frequency conversion over a wide frequency range, it can be extremely challenging for a bulk LiNbO3 crystal to fulfill the phase-matching conditions. LiNbO3 metasurfaces with resonantly enhanced nonlinear light-matter interaction at the nanoscale may circumvent such an issue. Here, we experimentally demonstrate efficient second-harmonic generation (SHG) and HHG from a LiNbO3 metasurface enhanced by guided-mode resonance. We observe a high normalized SHG efficiency of 5.1 × 10-5 cm2 GW-1. Moreover, with the alleviated above-gap absorption of the material, we demonstrate HHG up to the 7th order with the shortest generated wavelength of 226 nm. This work may provide a pathway towards compact coherent white-light sources with frequency spanning into the deep ultraviolet region for applications in spectroscopy and imaging.

9.
Phys Rev Lett ; 130(21): 213603, 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37295078

RESUMEN

Photonic topological states, providing light-manipulation approaches in robust manners, have attracted intense attention. Connecting photonic topological states with far-field degrees of freedom (d.o.f.) has given rise to fruitful phenomena. Recently emerged higher-order topological insulators (HOTIs), hosting boundary states two or more dimensions lower than those of bulk, offer new paradigms to localize or transport light topologically in extended dimensionalities. However, photonic HOTIs have not been related to d.o.f. of radiation fields yet. Here, we report the observation of polarization-orthogonal second-order topological corner states at different frequencies on a designer-plasmonic kagome metasurface in the far field. Such phenomenon stands on two mechanisms, i.e., projecting the far-field polarizations to the intrinsic parity d.o.f. of lattice modes and the parity splitting of the plasmonic corner states in spectra. We theoretically and numerically show that the parity splitting originates from the underlying interorbital coupling. Both near-field and far-field experiments verify the polarization-orthogonal nondegenerate second-order topological corner states. These results promise applications in robust optical single photon emitters and multiplexed photonic devices.


Asunto(s)
Frutas , Fotones , Femenino , Embarazo , Humanos
10.
Nano Lett ; 23(9): 3769-3774, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37129232

RESUMEN

High-resolution patterning of perovskite quantum dots (PQDs) is of significant importance for satisfying various practical applications, including high-resolution displays and image sensing. However, due to the limitation of the instability of PQDs, the existing patterning strategy always involves chemical reagent treatment or mask contact that is not suitable for PQDs. Therefore, it is still a challenge to fabricate high-resolution full-color PQD arrays. Here, we present a femtosecond laser-induced forward transfer (FsLIFT) technology, which enables the programmable fabrication of high-resolution full-color PQD arrays and arbitrary micropatterns. The FsLIFT process integrates transfer, deposition, patterning, and alignment in one step without involving a mask and chemical reagent treatment, guaranteeing the preservation of the photophysical properties of PQDs. A full-color PQD array with a high resolution of 2 µm has been successfully achieved. We anticipate that our facile and flexible FsLIFT technology can facilitate the development of diverse practical applications based on patterned PQDs.

11.
Opt Lett ; 48(5): 1140-1143, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36857233

RESUMEN

The implementation of transverse mode, polarization, frequency, and other degrees of freedom (d.o.f.s) of photons is an important way to improve the capability of photonic circuits. Here, a three-dimensional (3D) linear polarized (LP) LP11 mode converter was designed and fabricated using a femtosecond laser direct writing (FsLDW) technique. The converter included multi-mode waveguides, symmetric Y splitters, and phase delaying waveguides, which were constructed as different numbers and arrangements of circular cross section waveguides. Finally, the modes (LP11a and LP11b) were generated on-chip with a relatively low insertion loss (IL). The mode converter lays a foundation for on-chip high-order mode generation and conversion between different modes, and will play a significant role in mode coding and decoding of 3D photonic circuits.

12.
Phys Chem Chem Phys ; 25(14): 9753-9760, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36971009

RESUMEN

The design and actuation of soft robots are targeted at extreme motion control as well as high functionalization. In spite of robot construction optimized by bio-concepts, its motion system is still hindered by multiple actuator assembly and reprogrammable control for complex motions. Herein, our recent work is summarized and an all-light solution is proposed and demonstrated using graphene-oxide-based soft robots. It will be shown that, with a highly localized light field, lasers can define actuators precisely to form "joints" and facilitate efficient energy storage and release to realize genuine complex motions.

13.
Small ; 19(24): e2207968, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36899492

RESUMEN

Femtosecond lasers enable flexible and thermal-damage-free ablation of solid materials and are expected to play a critical role in high-precision cutting, drilling, and shaping of electronic chips, display panels, and industrial parts. Although the potential applications are theoretically predicted, true 3D nano-sculpturing of solids such as glasses and crystals, has not yet been demonstrated, owing to the technical challenge of negative cumulative effects of surface changes and debris accumulation on the delivery of laser pulses and subsequent material removal during direct-write ablation. Here, a femtosecond laser-induced cavitation-assisted true 3D nano-sculpturing technique based on the ingenious combination of cavitation dynamics and backside ablation is proposed to achieve stable clear-field point-by-point material removal in real time for precise 3D subtractive fabrication on various difficult-to-process materials. As a result, 3D devices including free-form silica lenses, micro-statue with vivid facial features, and rotatable sapphire micro-mechanical turbine, all with surface roughness less than 10 nm are readily produced. The true 3D processing capability can immediately enable novel structural and functional micro-nano optics and non-silicon micro-electro-mechanical systems based on various hard solids.

14.
Nano Lett ; 23(7): 2743-2749, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36940467

RESUMEN

Solid-state quantum emitters (QEs) are central components for photonic-based quantum information processing. Recently, bright QEs in III-nitride semiconductors, such as aluminum nitride (AlN), have attracted increasing interest because of the mature commercial application of the nitrides. However, the reported QEs in AlN suffer from broad phonon side bands (PSBs) and low Debye-Waller factors. Meanwhile, there is also a need for more reliable fabrication methods of AlN QEs for integrated quantum photonics. Here, we demonstrate that laser-induced QEs in AlN exhibit robust emission with a strong zero phonon line, narrow line width, and weak PSB. The creation yield of a single QE could be more than 50%. More importantly, they have a high Debye-Waller factor (>65%) at room temperature, which is the highest result among reported AlN QEs. Our results illustrate the potential of laser writing to create high-quality QEs for quantum technologies and provide further insight into laser writing defects in relevant materials.

15.
Nanoscale ; 15(11): 5429-5436, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36843427

RESUMEN

Flexible perovskite solar cells (FPSCs) have attracted considerable attention due to their broad application possibilities in next generation electronics. However, the commonly used transparent conductive electrodes (TCEs), such as indium tin oxide (ITO), suffer from poor flexible performance, impeding the development of FPSCs. Here, we propose a hybrid electrode (PUA/AgNWs/PH1000) comprising a thin percolation network of silver nanowires (AgNWs) inlaid on the surface of a flexible substrate (PUA) modified with a conductive layer (PH1000), which exhibits high optical transmittance and electrical conductivity, as well as robust mechanical flexibility. By applying the proposed PUA/AgNWs/PH1000 hybrid electrode in FPSCs, the resulting ITO-free devices exhibit the desired flexibility and mechanical stability; it can survive repeated continuous bending cycles and retain 77.4% of its initial power conversion efficiency after 10 000 bending cycles with the bending radius of 5 mm.

16.
Nano Lett ; 23(4): 1514-1521, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36730120

RESUMEN

Excitons are quasi-particles composed of electron-hole pairs through Coulomb interaction. Due to the atomic-thin thickness, they are tightly bound in monolayer transition metal dichalcogenides (TMDs) and dominate their optical properties. The capability to manipulate the excitonic behavior can significantly influence the photon emission or carrier transport performance of TMD-based devices. However, on-demand and region-selective manipulation of the excitonic states in a reversible manner remains challenging so far. Herein, harnessing the coordinated effect of femtosecond-laser-driven atomic defect generation, interfacial electron transfer, and surface molecular desorption/adsorption, we develop an all-optical approach to manipulate the charge states of excitons in monolayer molybdenum disulfide (MoS2). Through steering the laser beam, we demonstrate reconfigurable optical encoding of the excitonic charge states (between neutral and negative states) on a single MoS2 flake. Our technique can be extended to other TMDs materials, which will guide the design of all-optical and reconfigurable TMD-based optoelectronic and nanophotonic devices.

17.
Phys Chem Chem Phys ; 25(3): 2043-2049, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36546549

RESUMEN

Electronic states are significantly correlated with chemical compositions, and the information related to these factors is especially crucial for the manipulation of the properties of matter. However, this key information is usually verified by after-validation methods, which could not be obtained during material processing, for example, in the field of femtosecond laser direct writing inside materials. Here, critical evolution stages of electronic states for monolayer tungsten diselenide (WSe2) around the modification threshold (at a Mott density of ∼1013 cm-2) are observed by broadband femtosecond transient absorption spectroscopy, which is associated with the intense femtosecond-laser-assisted oxygen-doping mechanism. First-principles calculations and control experiments on graphene-covered monolayer WSe2 further confirm this modification mechanism. Our findings reveal a photochemical reaction for monolayer WSe2 under the Mott density condition and provide an electronic state criterion to in situ monitor the degrees of modification in monolayer transition metal dichalcogenides during the femtosecond laser modification.

18.
Adv Mater ; 35(3): e2207771, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36341484

RESUMEN

Nanostructures provide a simple, effective, and low-cost route to enhance the light-trapping capability of optoelectronic devices. In recent years, nano-optical structures have been widely used in perovskite optoelectronic devices to greatly enhance the device performance. However, the inherent instability of perovskite materials hinders the practical application of these nanostructured optoelectronic devices. Here, in situ encapsulated moiré lattice perovskite photodetectors (PDs) by two nanograting-structured soft templates with relative rotation angles is fabricated. The confinement growth of the two nanograting templates leads to crystal growth with moiré lattice structure, which improves the light-harvesting ability of the perovskite crystal, thereby improving the device performance. The PD exhibits responsivity to 1026.5 A W-1 . The Moiré lattice-perovskite-based PD maintained 95% of the initial performance after 223 days. After being continuously sprayed with water moist for 180 min, the performance is maintained at 95.7% of its initial level. The nanograting structure endows the device with high polarization sensitivity of Imax /Imin as high as 9.1.

19.
Sci Bull (Beijing) ; 67(5): 501-511, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36546171

RESUMEN

Self-healing materials (SHMs) with unique mechanical and electronic properties are promising for self-reparable electronics and robots. However, the self-healing ability of emerging two-dimensional (2D) materials, for instance, MXenes, has not been systematically investigated, which limits their applications in self-healing electronics. Herein, we report the homogeneous self-healing assembly (homo-SHA) of MXene and the heterogeneous self-healing assembly (hetero-SHA) of MXene and graphene oxide (GO) under moisture treatments. The self-healing mechanism has been attributed to the hydration induced interlayer swelling of MXene and GO and the recombination of hydrogen bond networks after water desorption. The multiform hetero-SHA of MXene and GO not only enables facile fabrication of free-standing soft electronics and robots, but also endows the resultant devices with damage-healing properties. As proof-of-concept demonstrations, free-standing soft electronic devices including a generator, a humidity sensor, a pressure sensor, and several robotic devices have been fabricated. The hetero-SHA of MXene and GO is simple yet effective, and it may pioneer a new avenue to develop miniature soft electronics and robots based on 2D materials.

20.
Phys Rev Lett ; 129(17): 173601, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36332264

RESUMEN

Edge states in topological phase transitions have been observed in various platforms. To date, verification of the edge states and the associated topological invariant are mostly studied, and yet a quantitative measurement of topological phase transitions is still lacking. Here, we show the direct measurement of edge states and their localization lengths from survival probability. We employ photonic waveguide arrays to demonstrate the topological phase transitions based on the Su-Schrieffer-Heeger model. By measuring the survival probability at the lattice boundary, we show that in the long-time limit, the survival probability is P=(1-e^{-2/ξ_{loc}})^{2}, where ξ_{loc} is the localization length. This length derived from the survival probability is compared with the distance from the transition point, yielding a critical exponent of ν=0.94±0.04 at the phase boundary. Our experiment provides an alternative route to characterizing topological phase transitions and extracting their key physical quantities.


Asunto(s)
Probabilidad , Transición de Fase
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...